Package: gsAnalysis (via r-universe)

February 13, 2025

The Miscenaneous tools for genomic sequence analysis
Version 0.0.2
Description A miscellaneous toolbox for various genomic sequence analysis tasks. Refer to package vignettes for different topics covered in this package. Part of the y3628 analysis suite.
License GPL (>= 3)
Encoding UTF-8
Roxygen list(markdown = TRUE)
RoxygenNote 7.3.2
biocViews CellBiology, Genetics
Imports dplyr, readr, tibble, stringr, BSgenome, Biostrings, GenomicRanges, rtracklayer, universalmotif, GenomicFeatures, SummarizedExperiment, y3628
Depends R (>= 4.1)
Suggests BSgenome.Dmelanogaster.UCSC.dm6, knitr, rmarkdown, TxDb.Dmelanogaster.UCSC.dm6.ensGene
VignetteBuilder knitr
Config/pak/sysreqs make libicu-dev libpng-dev libxml2-dev libssl-dev libx11-dev
Repository https://yeyuan98.r-universe.dev
RemoteUrl https://github.com/yeyuan98/gsAnalysis
RemoteRef HEAD
RemoteSha 1e4dc916612623309cf44d23f24d04e51e3e74d9
Contents
.MaxEntScanRun .overlapWidths .strandedShift bam_summary_cigar

2 .overlapWidths

	BranchPointScan	4
	IRFinderS_read	5
	IRFinderS_readSamples	6
	MaxEntScan	7
	phastCons	8
	RIME	9
	rmats_filter	9
	rmats_read	10
	rmats_toGRange	11
	writeXStringSetNamed	12
Index		13

.MaxEntScanRun

System cell of MaxEntScan perl script

Description

System cell of MaxEntScan perl script

Usage

```
.MaxEntScanRun(ps.MES, sequences, ME.dir)
```

Arguments

ps.MES What MaxEntScan script to run. sequences character vector of sequences.

ME.dir Path to the unzipped MaxEntScan directory.

Value

numeric vector of the MaxEntScan return values.

.overlapWidths

Count number of overlapping bases

Description

Count number of overlapping bases

Usage

```
.overlapWidths(query, subject)
```

.strandedShift 3

Arguments

query GenomicRanges::Ganges of query. subject GenomicRanges::Ganges of subject.

Details

'overlapping bases' is counted for each query against ALL subject ranges. If a query overlaps with two subject ranges with 5 and 4 bases, the number reported will be 5+4=9. Implementation is:

- 1. GenomicRanges::subtract(query, subject)
- 2. Count up the width of the resulting GRangesList
- 3. (original width of query) (width of subtracted query)

Value

Integer vector of numbers of overlapping bases. Guaranteed to be the same order as the query ranges.

.strandedShift

Stranded version of GenomicRanges::shift

Description

Stranded version of GenomicRanges::shift

Usage

```
.strandedShift(GRanges.input, shift)
```

Arguments

GRanges.input GenomicRanges::GRanges

shift how many bp to shift each range. For '+' stranded range, a positive shift will be

towards 3' of the genomic coordinate. For '-', a positive shift will be towards 5'

of the genome.

Value

Shifted GenomicRanges::GRanges.

4 BranchPointScan

bam_summary_cigar

Summarize CIGAR string by addition

Description

Summarize CIGAR string by addition

Usage

```
bam_summary_cigar(cigar, which, FUNC = sum)
```

Arguments

cigar CIGAR strings as character vector which CIGAR operators to extract

FUNC Summarize function. Accept numeric vector and output length = 1.

Value

Numeric vector of sums of specified CIGAR operators.

Examples

```
cigar.test <- c(
  "148H47M1D113M1D34M1D39M460H",
  "50M"
)
bam_summary_cigar(
  # All Ops that consume reference
  # Therefore sum = reference lengths
  cigar.test, which = c("M", "D", "N", "=", "X")
)</pre>
```

 ${\tt BranchPointScan}$

Distance from branchpoint to 3' splicing site

Description

Distance from branchpoint to 3' splicing site

Usage

```
BranchPointScan(
   GRanges.intron,
   branchpoint.motif,
   BSgenome,
   logodds.threshold = 0.5
)
```

IRFinderS_read 5

Arguments

 ${\tt GRanges.intron} \quad Genomic Ranges:: GRanges \ of \ the \ introns.$

branchpoint.motif

An universalmotif::universalmotif-class object representing the branch point.

Can be loaded using universalmotif::read_* methods. For example, universalmotif::read_meme().

BSgenome

BSgenome object from Bioconductor.

logodds.threshold

logodds threshold used by universalmotif::scan_sequences().

Value

A numeric vector in order of ranges of GRanges.intron. Ranges that do not have identified branch-point will take NA values.

Examples

```
vignette("intron-properties")
```

IRFinderS_read

Read IRFinder-S output of a single sample

Description

Read IRFinder-S output of a single sample

Usage

```
IRFinderS_read(result.dir, type.samples = "validated")
```

Arguments

result.dir

IRFinder-S output directory

type.samples

Which summary type to read in, see details

Details

Two sample types are output by IRFinder-S: validated and full.

- validated: read the "IRFinder-IR-nondir-val.txt"
- full: read the "IRFinder-IR-nondir.txt"

Value

tibble of IRFinder-S results

Examples

#TODO

IRFinderS_readSamples Read IRFinder-S output of multiple samples

Description

Report a "merged" SummarizedExperiment for differential analysis. Refer to details section.

Usage

```
IRFinderS_readSamples(
  named.result.dirs,
  score.column = "IR.ratio",
  join.column = c("chr", "start", "end", "strand", "symbol"),
  type.samples = "validated",
  min.samples = 3,
  wl = 0
)
```

Arguments

```
named.result.dirs
Named paths to result directories, see description.

score.column
Which one column to read in as score.

join.column
Which columns define an intron.

type.samples
Forwarded to IRFinderS_read().

min.samples
How to filter retained introns, see description.
```

How to filter retained introns, see description.

Details

wl

The routine is divided into the following steps:

First, read in retained introns from each sample by IRFinderS_read.

Introns that have warnings defined by wl is removed from each sample. wl definition follows that of the IRFinder Diff routine.

Unique introns are defined by columns specified in join.column.

Next, consensus introns are determined. If an intron is found in at least min. samples of samples it is considered as a consensus intron.

Finally, intron scores from the 'full' data table are extracted, which will be put as the "scores" assay in the output SE object.

named.result.dirs must be a named character vector whose:

- names = group name
- values = full path to the sample result directories

MaxEntScan 7

Value

SummarizedExperiment object.

Examples

#TODO

Description

Splicing site strength scoring by MaxEntScan

Usage

```
MaxEntScan(path.zip.MES = "burgelab.maxent.zip", BSgenome, GRange.intron)
```

Arguments

path.zip.MES Path to the MaxEntScan perl program (zipped). While not provided by the pack-

age, you may obtain a copy from the original MaxEntScan author. Alternatively,

you may get an archived copy from Github.

BSgenome object from Bioconductor.

GRange . intron Genomic Ranges::GRanges of the introns. Genome must match that of the BS genome

object. This intron ranges must be stranded (i.e., only contains '+' and '-' strand

values.)

Value

data.frame with the following columns. Rows are guaranteed to match order of the input introns.

- MaxEnt.5ss, score for the 5' splicing site
- MaxEnt.3ss, score for the 3' splicing site

Examples

```
vignette("intron-properties")
```

8 phastCons

phastCons

Conservation scoring by phastCons

Description

Conservation scoring by phastCons

Usage

```
phastCons(GRange.intron, bw.phastCons.path, bed.phastCons.path)
```

Arguments

GRange.intron GenomicRanges::GRanges of the introns.

bw.phastCons.path

Path to a bigwig file of phastCons scores. This may be retrieved from the UCSC (e.g., dm6). Look for the dm6.phastCons124way.bw file.

bed.phastCons.path

Path to a bed file of conserved regions annotated by phastCons. This may be retrieved from the UCSC (e.g., dm6). Look for the phastConsElements124way.txt.gz file.

Details

This function can be used for compute scores for any GRanges of interest.

Value

data.frame. Number of rows is the same as number of ranges of GRange.intron. Results have the following columns

mean Mean phastCons values over each range

perc.in.element Percentage of bases in conserved phastCons elements for each range

Examples

```
vignette("intron-properties")
```

RIME 9

RIME

Intron length ratio to mean neighboring exons

Description

Intron length ratio to mean neighboring exons

Usage

```
RIME(
   txdb = TxDb.Dmelanogaster.UCSC.dm6.ensGene::TxDb.Dmelanogaster.UCSC.dm6.ensGene,
   GRange.intron
)
```

Arguments

txdb Bioconductor TxDb. Must match the intron GRanges.

GRange.intron GenomicRanges::GRanges of the introns.

Value

Numeric vector of the ratios.

Examples

```
vignette("intron-properties")
```

rmats_filter

Filtering rMATS output of different AS patterns

Description

Filtering rMATS output of different AS patterns

Usage

```
rmats_filter(df, supp_reads = c(5, 2), incLvl_limits = c(0.05, 0.95))
```

Arguments

df Data frame of parsed rMATS output. Use rmats_read().

supp_reads Supporting read filter. See details. incLvl_limits Inclusion level filter. See details.

10 rmats_read

Details

Typically, it is desirable to filter the rMATS output to:

- Reject detected AS events that have too few supporting reads.
- Remove AS events whose inclusion levels are extreme.

This function applies the following filters (default parameters assumed):

- 1. Supporting read count (both EJC and IJC) must be ≥ 5 in ≥ 2 samples.
- 2. Inclusion level must be in the range of 0.05-0.95.

Value

Filtered rMATS output. See details.

Examples

#TODO

rmats_read

Read rMATS output of different AS patterns

Description

Read rMATS output of different AS patterns

Usage

```
rmats_read(outputs.dir, method)
```

Arguments

outputs.dir Output directory of rMATS.
method Either "JC" or "JCEC", see details.

Details

This is a convenience function for reading rMATS output, merging different splicing patterns into a single data frame for easier further analysis. Refer to rMATS Github for details on results generated by rMATS: https://github.com/Xinglab/rmats-turbo/blob/v4.3.0/README.md#output

rMATS normalizes lengths of individual splicing variants. There are two methods used for this normalization: JC and JCEC. Refer to the rMATS paper for more details: https://doi.org/10.1073/pnas.1419161111 rMATS coordinated are 0-based; the exact meaning of start and end varies by splicing pattern type:

- A3SS/A5SS: start/end = start/end of the long exon (inclusion form).
- SE: start/end = start/end of the skipped exon (inclusion form).
- MXE: start/end = start of the first exon / end of the second exon.
- RI: start/end = start/end of the retained intron (inclusion form).

rmats_toGRange

Value

Data frame of rMATS output

Examples

TODO

rmats_toGRange

Converts rMATS data frame to GenomicRange

Description

Convenience function for converting rMATS data to GRanges.

Usage

```
rmats_toGRange(df, ...)
```

Arguments

df rMATS data read by rmats_read().

... <tidy-select> See details.

Three columns are used to fill in GRanges information: chr, start_0base, end.

Two columns are by default added to the metadata: geneSymbol, Type.

Extra metadata columns are specified by the tidyselect ellipsis.

Value

GRanges object

Examples

#TODO

writeXStringSetNamed writeXStringSet with identifiers

Description

Write a XStringSet to file (FASTA/FASTQ) with names as identifiers.

Usage

```
writeXStringSetNamed(x, filepath, append = FALSE, compress = FALSE, ...)
```

Arguments

x Object XString to write to file

filepath File to write to

append Must be False (does not support append)

compress Must be False (does not support compression)

... Forwarded to Biostrings::writeXStringSet()

Details

Somehow the original Biostrings::writeXStringSet() does not write identifiers. This function uses names provided by name() and write ID.

Examples

#TODO

Index

```
.MaxEntScanRun, 2
.overlapWidths, 2
.strandedShift, 3

bam_summary_cigar, 4
BranchPointScan, 4

IRFinderS_read, 5
IRFinderS_readSamples, 6

MaxEntScan, 7

phastCons, 8

RIME, 9

rmats_filter, 9

rmats_read, 10

rmats_toGRange, 11

writeXStringSetNamed, 12
```